Neuronal Small RNAs Control Behavior Transgenerationally

Abstract

It is unknown whether the activity of the nervous system can be inherited. In Caenorhabditis elegans nematodes, parental responses can transmit heritable small RNAs that regulate gene expression transgenerationally. In this study, we show that a neuronal process can impact the next generations. Neurons-specific synthesis of RDE-4-dependent small RNAs regulates germline amplified endogenous small interfering RNAs (siRNAs) and germline gene expression for multiple generations. Further, the production of small RNAs in neurons controls the chemotaxis behavior of the progeny for at least three generations via the germline Argonaute HRDE-1. Among the targets of these small RNAs, we identified the conserved gene saeg-2, which is transgenerationally downregulated in the germline. Silencing of saeg-2 following neuronal small RNA biogenesis is required for chemotaxis under stress. Thus, we propose a small-RNA-based mechanism for communication of neuronal processes transgenerationally.

Read full text

Reference:

Posner R, Toker IA, Antonova O, Star E, Anava S, Azmon E, Hendricks M, Bracha S, Gingold H, Rechavi O. Neuronal Small RNAs Control Behavior Transgenerationally. Cell. 2019 Jun 13;177(7):1814-1826.e15. doi: 10.1016/j.cell.2019.04.029. Epub 2019 Jun 6. PubMed PMID: 31178120.



Keywords: C. elegans; epigenetic inheritance; neuronal small RNAs; non-Mendelian inheritance; small RNA inheritance; transgenerational inheritance; behavior; chemotaxis under stress; saeg-2; Argonaute HRDE-1; chemotaxis behavior of the progeny; RDE-4-dependent small RNAs.

Join for free INPST as a member

The International Natural Product Sciences Taskforce (INPST) maintains up-to-date lists with conferencesgrants and funding opportunitiesjobs and open positions, and journal special issues with relevance for the area of phytochemistry and food chemistry, pharmacology, pharmacognosy research, and natural product science.

Leave a Reply

avatar
  Subscribe  
Notify of