Abstract
O-GlcNAcylation (O-linked β-N-acetylglucosaminylation) is notably decreased in Alzheimer’s disease (AD) brain. Necroptosis is activated in AD brain and is positively correlated with neuroinflammation and tau pathology. However, the links among altered O-GlcNAcylation, β-amyloid (Aβ) accumulation, and necroptosis are unclear. Here, we found that O-GlcNAcylation plays a protective role in AD by inhibiting necroptosis. Necroptosis was increased in AD patients and AD mouse model compared with controls; however, decreased necroptosis due to O-GlcNAcylation of RIPK3 (receptor-interacting serine/threonine protein kinase 3) was observed in 5xFAD mice with insufficient O-linked β-N-acetylglucosaminase. O-GlcNAcylation of RIPK3 suppresses phosphorylation of RIPK3 and its interaction with RIPK1. Moreover, increased O-GlcNAcylation ameliorated AD pathology, including Aβ burden, neuronal loss, neuroinflammation, and damaged mitochondria and recovered the M2 phenotype and phagocytic activity of microglia. Thus, our data establish the influence of O-GlcNAcylation on Aβ accumulation and neurodegeneration, suggesting O-GlcNAcylation–based treatments as potential interventions for AD.
O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer’s disease by inhibiting necroptosis https://t.co/0DTjnC2vII #Alzheimers #Necroptosis @erlesen @HealthyFellow @MarcoAlbuja @ShraboniGhosal
More from #DHPSP, INPST, and CRBIOTECH: https://t.co/1R2kSL54sX pic.twitter.com/qsWKniBXEM— Science Communication (@ScienceCommuni2) January 24, 2021