The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification

Abstract

Vitamin K is a fat-soluble vitamin that is indispensable for the activation of vitamin K-dependent proteins (VKDPs) and may be implicated in cardiovascular disease (CVD). Vascular calcification is intimately associated with CV events and mortality and is a chronic inflammatory process in which activated macrophages promote osteoblastic differentiation of vascular smooth muscle cells (VSMCs) through the production of proinflammatory cytokines such as IL-1β, IL-6, TNF-α, and oncostatin M (OSM) in both intimal and medial layers of arterial walls. This process may be mainly mediated through NF-κB signaling pathway. Vitamin K has been demonstrated to exert anti-inflammatory effects through antagonizing NF-κB signaling in both in vitro and in vivo studies, suggesting that vitamin K may prevent vascular calcification via anti-inflammatory mechanisms. Matrix Gla protein (MGP) is a major inhibitor of soft tissue calcification and contributes to preventing both intimal and medial vascular calcification. Vitamin K may also inhibit progression of vascular calcification by enhancing the activity of MGP through facilitating its γ-carboxylation. In support of this hypothesis, the procalcific effects of warfarin, an antagonist of vitamin K, on arterial calcification have been demonstrated in several clinical studies. Among the inactive MGP forms, dephospho-uncarboxylated MGP (dp-ucMGP) may be regarded as the most useful biomarker of not only vitamin K deficiency, but also vascular calcification and CVD. There have been several studies showing the association of circulating levels of dp-ucMGP with vitamin K intake, vascular calcification, mortality, and CVD. However, additional larger prospective studies including randomized controlled trials are necessary to confirm the beneficial effects of vitamin K supplementation on CV health.

Read full text: Shioi A, Morioka T, Shoji T, Emoto M. The Inhibitory Roles of Vitamin K in Progression of Vascular Calcification. Nutrients. 2020; 12(2):583.



Keywords: atherosclerosis; matrix Gla protein; oncostatin M; vascular calcification; vitamin K, osteoblastic differentiation of vascular smooth muscle cells (VSMCs), vitamin K-dependent proteins (VKDPs), #Vitamins, #Supplements.

The International Natural Product Sciences Taskforce (INPST) maintains up-to-date lists with conferencesgrants and funding opportunitiesjobs and open positions, and journal special issues with relevance for the area of phytochemistry and food chemistry, pharmacology, biotechnology, medicine and pharmacognosy research, and natural product science.

Join for free INPST as a member

INPST social media channels