Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus aureus

Abstract:

During the course of our ongoing work to discover new inhibitors of biofilm formation of Staphylococcus aureus from fungal sources, we observed biofilm inhibition by cytochalasans isolated from cultures of the ascomycete Hypoxylon fragiforme for the first time. Two new compounds were purified by a bioassay-guided fractionation procedure; their structures were elucidated subsequently by nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). This unexpected finding prompted us to test further cytochalasans from other fungi and from commercial sources for comparison. Out of 21 cytochalasans, 13 showed significant inhibition of Staphylococcus aureus biofilm formation at subtoxic levels. These findings indicate the potential of cytochalasans as biofilm inhibitors for the first time, also because the minimum inhibitory concentrations (MIC) are independent of the anti-biofilm activities. However, cytochalasans are known to be inhibitors of actin, making some of them very toxic for eukaryotic cells. Since the chemical structures of the tested compounds were rather diverse, the inclusion of additional derivatives, as well as the evaluation of their selectivity against mammalian cells vs. the bacterium, will be necessary as next step in order to develop structure-activity relationships and identify the optimal candidates for development of an anti-biofilm agent.

Read full text

Reference:

Yuyama KT, Wendt L, Surup F, Kretz R, Chepkirui C, Wittstein K, Boonlarppradab C, Wongkanoun S, Luangsa-Ard J, Stadler M, Abraham WR. Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus Aureus. Biomolecules. 2018 Oct 30;8(4). pii: E129. doi: 10.3390/biom8040129. PubMed PMID: 30380779.

Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus aureus
Cytochalasans Act as Inhibitors of Biofilm Formation of Staphylococcus aureus

Keywords: cytochalasans, inhibitors of biofilm formation, Staphylococcus aureus, nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HR-MS), bioassay-guided fractionation, Hypoxylon fragiforme.


Join for free INPST as a member

The International Natural Product Sciences Taskforce (INPST) maintains up-to-date lists with conferences, grants and funding opportunities, jobs and open positions, and journal special issues with relevance for the area of phytochemistry and food chemistry, pharmacology, pharmacognosy research, and natural product science.

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x